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Abstract. Fractional order diffusion equations are generalizations of

classical diffusion equations which are used to model in physics, finance,

engineering, etc. In this paper we present an implicit difference approx-

imation by using the alternating directions implicit (ADI) approach to

solve the two-dimensional space-time fractional diffusion equation (2DSTFDE)

on a finite domain. Consistency, unconditional stability, and therefore

first-order convergence of the method are proven. Some numerical exam-

ples with known exact solution are tested, and the behavior of the errors

are analyzed to demonstrate the order of convergence of the method.
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1. Introduction

Fractional derivative and integral are almost as old as their integer-order

counterparts [12, 14]. Fractional diffusion equations have recently been used to

model problems in physics [11], engineering [2, 1, 18, 19], and finance [6, 8, 16].
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Fractional space derivatives are used to model a particle motion which spreads

at a rate that is different than classical model. Because of physical application,

the spatial order derivative is usually between one and two. Also temporal

(time) fractional derivative may be used to model a particle motion that the

time between two jumps is more than usual [19]. Fractional differential equa-

tions have been studied by a number of authors, and since analytic closed-form

solution for many kinds of fractional differential equations is elusive, a lot of au-

thors have tried to present numerical methods to solve those equations. Zhuang

and Liu [25] used an implicit difference approximation for the time fractional

diffusion equation and analyzed its error. Ervin and Roop [5] used variational

method for fractional advection dispersion equations. Adomian decomposition

method developed to derive analytical approximation solution for fractional

heat-like and wave-like equations with variable coefficient by Momani [13]. Xu

et al. [24] used homotopy method for nonlinear fractional partial differential

equations. Podlubny et al. [15] presented a matrix approach to discrete partial

differential equations. Tadjeran et al. [21, 22] also developed Crank-Nicolson

discretization to solve fractional diffusion equation. An ADI-Euler method was

used to solve two-dimensional fractional dispersion equation by Meerschaert et

al. [10]. They applied ADI approach for solving two-dimensional fractional

dispersion equation, but the order of temporal derivative was not fractional.

After that, Liu et al. [26] presented an implicit difference approximation for the

two-dimensional space-time fractional diffusion equation. Since the equation is

two-dimensional, in this method, a very large linear system of equations with

(Nx − 1)(Ny − 1) unknowns should be solved, which is computationally expen-

sive. Therefore, using ADI approach is useful here to decrease computational

cost, we should use an efficient method to approximate fractional temporal

derivative. Diethelm et al. [3] presented a selection of numerical methods to

approximate Caputo fractional derivative. In this paper, in order to use ADI

approach, Grünwald formula and unshifted Grünwald formula are used to es-

timate Caputo derivative. Consistency and unconditional stability are proven

for our new method and hence according to Lax’s equivalence theorem, the

method is convergent.

Consider the two-dimensional space-time fractional diffusion equation

∂αu(x, y, t)

∂tα
= d(x, y, t)

∂βu(x, y, t)

∂xβ
+ e(x, y, t)

∂γu(x, y, t)

∂yγ
+ q(x, y, t). (1.1)

On a finite domain xL < x < xH , yL < y < yH , with fractional orders

0 < α ≤ 1, 1 < β ≤ 2, and 1 < γ ≤ 2, the diffusion coefficients d(x, y, t) > 0,

e(x, y, t) > 0. The function q(x, y, t) can be used to represent sources and sinks,

with the initial conditions

u(x, y, 0) = f(x, y), xL ≤ x ≤ xH , yL ≤ y ≤ yH ,
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and boundary conditions

u(xL, y, t) = 0 , u(xH , y, t) = B(xH , y, t) yL ≤ y ≤ yH , t > 0

u(x, yL, t) = 0 , u(x, yH , t) = B(x, yH , t) xL ≤ x ≤ xH , t > 0

The classical diffusion equation is obtained by α = 1, β = γ = 2. The values of

1 < β < 2, 1 < γ < 2 lead to a super-diffusion model. The value of 0 < α < 1

leads to super-slow diffusion model and the value of α > 1 leads to super-fast

diffusion model [17]. The case 0 < α < 1 is only considered in this paper.

The spatial fractional derivatives in Eq.(1.1) are Riemman (left) factional de-

rivative. The Riemman fractional derivative for a function u(x, y, t) over the

interval xL < x < xH is defined as follows:

∂βu(x, y, t)

∂xβ
=

1

Γ(m− β)

∂m

∂xm

∫ x

xL

u(ξ, y, t)

(x− ξ)β+1−n
dξ, (1.2)

where m is an integer such that m − 1 < β ≤ m. In most of the papers and

books, the case L = 0 is defined as the Riemman-Liouville fractional deriva-

tive, and the case L = −∞ is defined as the Liouville fractional derivative. We

extend the zero boundary conditions for x < xL, y < yL, so that the Riemman

and the Riemman-Liouville forms become equivalent. This definition is left

fractional derivative, and right fractional derivative is defined similarly. For

different definitions and concepts on fractional derivative, see [12, 14, 17].

Caputo fractional derivative is usually used for time fractional derivative be-

cause it leads to integer-order initial conditions and it is important to solve

practical problems. Caputo fractional derivative is defined as follows:

∂αu(x, y, t)

∂tα
=

1

Γ(n− α)

∫ t

0

∂u(x, y, η)

∂η

∂η

(t− η)α+1−n
, (1.3)

where n is an integer such that n− 1 < α ≤ n.

This paper is organized as follows. The implicit difference-ADI method is

presented in section 2. In section 3, the stability and convergence of the implicit

difference-ADI method are analyzed. In section 4, some numerical examples

are given.

2. The Numerical Method

We use the Grünwald finite difference formula to estimate the spatial β-order

fractional derivative. It is shown in [9] that the standard Grünwald formula

usually results unstable finite difference methods . Therefore we use a right-

shifted Grünwald formula to estimate the spatial β-order fractional derivative

[9]

∂βu(x, y, t)

∂xβ
=

1

Γ(−β)
lim

Nx→∞

Nx∑
p=0

Γ(p− β)

Γ(p+ 1)
u(x− (p− 1)h, y, t),
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where Nx is a positive integer such that h = (x−xL)/Nx and Γ(.) is the gamma

function. We also define Grünwald weights by:

ωβ,p =
Γ(p− β)

Γ(−β)Γ(p+ 1)
= (−1)p

β(β − 1) . . . (β − p+ 1)

p!
= (−1)p

(
β

p

)
.

We will use the customary notation tn = n∆t, 0 ≤ tn ≤ T for time, ∆x =

hx > 0 is the spatial grid size in x-direction, ∆x = (xH − xL)/Nx, with

xi = xL + i∆x for i = 0, . . . Nx; ∆y = hy is the spatial grid size in y-direction,

∆y = (yH − yL)/Ny, with y = yL + j∆y for j = 0, . . . , Ny. Define un
i,j as the

numerical approximation to u(xi, yj , tn). Similarly, define dni,j = d(xi, yj , tn),

eni,j = e(xi, yj , tn), and qni,j = q(xi, yj , tn). The initial conditions are u0
i,j =

f(xi, yj). The boundary conditions on the boundary of this region are un
0,j = 0,

at x = xL; uNx,j = Bn
Nx,j

= B(xH , yj , tn), at x = xH ; un
i,0 = 0, at y = yL; and

un
i,Ny

= Bn
i,Ny

= B(xi, yH , tn), at y = yH .

Caputo fractional derivative is used for time fractional derivative in Eq.(1.1). It

should be mentioned that it is difficult to estimate Caputo fractional derivative

because ∂nu(x, y, t)/∂ηn appears as integrand. For some methods to estimate

Caputo fractional derivative see [3, 26]. Lemma 2.1 shows that the Caputo

fractional derivative and the Riemman-Liouville fractional derivative coincide

if the initial conditions are homogeneous.

Lemma 2.1. Let α ≥ 0 and n− 1 < α ≤ n. Assume that f is such that both

aD
α
xf (Riemman-Liouville derivative) and C

a D
α
xf (Caputo derivative) exist.

Moreover, let Dkf(a) = 0 for k = 0, 1, . . . , n− 1, then

aD
α
xf =C

a Dα
xf.

Proof. For proof see [23]. □

According to this lemma, assume that ∂ku(x, y, t)/∂ηk = 0, for k = 0, 1, . . . , n−
1 and n− 1 < α ≤ n, therefore we can use approximation methods for Caputo

derivatives which were used to estimate Riemman-Liouville derivatives.

0 < α < 1 is usually used in Eq.(1.1) for applications and assume that

u(x, y, t) = 0 then the Grünwald formula (unshifted Grünwald formula) can

be used to estimate the fractional derivative at level tn+1

∂αu(xi, yj , tn+1)

∂tα
=

1

(∆t)α

n+1∑
k=0

ωα,ku(xi, yj , tn+1 − k∆t). (2.1)

For spatial fractional derivatives a right shifted Grünwald formula is used at

level tn+1

∂βu(xi, yj , tn+1)

∂xβ
=

1

(∆x)β

i+1∑
p=0

ωβ,pu(xi − (p− 1)hx, yj , tn+1), (2.2)
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∂γu(xi, yj , tn+1)

∂yδ
=

1

(∆y)γ

j+1∑
q=0

ωγ,qu(xi, yj − (q − 1)hy, tn+1). (2.3)

If estimations (2.1), (2.2), (2.3) are subsituted into Eq.(1.1) then the resulting

implicit difference equations become

n+1∑
k=0

ωα,ku
n+1−k
i,j =

dn+1
i,j (∆t)α

(∆x)β

i+1∑
p=0

ωβ,pu
n+1
i+1−p,j

+
en+1
i,j (∆t)α

(∆y)γ

j+1∑
q=0

ωγ,qu
n+1
i,j+1−q + (∆t)αqn+1

i,j ,

un+1
i,j +

n+1∑
k=1

ωα,ku
n+1−k
i,j =

dn+1
i,j (∆t)α

(∆x)β

i+1∑
p=0

ωβ,pu
n+1
i+1−p,j

+
en+1
i,j (∆t)α

(∆y)γ

j+1∑
q=0

ωγ,qu
n+1
i,j+1−q + (∆t)αqn+1

i,j .(2.4)

Define the finite difference operations as follows:

Lα,tu
n+1
i,j = −

n+1∑
k=1

ωα,ku
n+1−k
i,j ,

Lβ,xu
n+1
i,j =

dn+1
i,j (∆t)α

(∆x)β

i+1∑
p=0

ωβ,pu
n+1
i+1−p,j ,

Ln+1
γ,y un+1

i,j =
en+1
i,j (∆t)α

(∆y)γ

j+1∑
q=0

ωγ,qu
n+1
i,j+1−q.

Eq.(2.4), in operator notation, is as follows:

(1− (∆t)αLβ,x − (∆t)αLγ,y)u
n+1
i,j = Lα,tu

n+1
i,j + (∆t)αqn+1

i,j . (2.5)

The ADI method is used to significantly reduce the computational cost in

solving classical multi-dimensional diffusion equations [7]. The ADI method

has been used to solve the two-dimensional space fractional diffusion equation

[10]. For using ADI method, some perturbations of Eq.(2.5) are used to derive

schemes that are specified and solved in one direction at a time, and for this

problem the Eq.(2.5) is written in a seperate form

(1− (∆t)αLβ,x)(1− (∆t)αLγ,y)u
n+1
i,j = Lα,tu

n+1
i,j + (∆t)αqn+1

i,j , (2.6)

which produces an additional perturbation error as follows:

(∆t)2α(Lβ,xLγ,y)u
n+1
i,j . (2.7)
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Eq.(2.6) can be divided into two equations, using an intermediate solution u∗
i,j ,

(1− (∆t)αLβ,x)u
∗
i,j = Lα,tu

n+1
i,j + (∆t)αqn+1

i,j , (2.8)

(1− (∆t)αLγ,y)u
n+1
i,j = u∗

i,j . (2.9)

Eq.(2.6) is obtained from equations (2.8) and (2.9) just by multiplying (2.9) by

(1− (∆t)αLβ,x) and add the result to (2.8).

The intermediate solution u∗
i,j in equations (2.8) and (2.9) is defined to advance

the numerical solution un
i,j at time tn to the numerical solution un+1

i,j at time

tn+1. The implicit difference-ADI algorithm is as follows:

(1) First solve a set of Nx − 1 equations in x-direction (for each fixed yj)

to obtain the intermediate solution u∗
i,j from Eq.(2.8),

(2) Then change the spatial direction, and solve a set of Ny − 1 equations

(obtained from Eq.(2.9)) in y-direction (for each fixed xi) to obtain

the solution un+1
i,j by using the intermediate solution u∗

i,j from the first

step.

To solve the first step in Eq.(2.8), the boundary conditions for the intermediate

solution u∗
i,j should be defined carefully, and these conditions should be adopted

to Eq.(2.9). Boundary conditions are usually given on the boundary of the

rectangular region xL < x < xH , yL < y < yH , so the boundary conditions for

intermediate solution u∗ can be obtained. The left and the bottom boundary

conditions for un
i,j are zero, and the right boundary condition un+1

Nx,j
= Bn+1

Nx,j
is

used to compute the boundary values for u∗ as

u∗
Nx,j = (1− (∆t)αLγ,y)B

n+1
Nx,j

, (2.10)

that is used in solving the sets of equations defined by Eq.(2.8).

In example 4.1 it is shown that because the implicit difference-ADI method

needs zero initial conditions, we should first change the initial conditions to

zero.

3. Consistency and Stability of the Implicit Difference-ADI

Method

In this section, we demonstrate that the implicit difference-ADI method for

the two-dimensional space-time fractional diffusion equation (1.1) is not only

consistent, but also unconditionally stable. Therefore according to the Lax’s

equivalence theorem, this method will be actually convergent. It is shown in

the following theorem that this method is consistent and has truncation error

O(∆x) +O(∆y) +O(∆t).

Theorem 3.1. Let 0 < α < 1, 1 < β < 2, 1 < γ < 2, the solution of Eq.(1.1)

is unique, and its temporal partial derivative up to order α + 1 and spatial

partial derivatives up to order r are in L(R3), and its spatial partial derivative

up to order r − 1 are zero at infinity, where r > α + β + 3. Then the implicit
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difference-ADI method defined by (2.6) for solving (1.1) is consistent, and its

truncation error has the order O(∆x) +O(∆y) +O(∆t).

Proof. We only use Grünwald formula (shifted and unshifted) to estimate frac-

tional derivatives. The O(∆x), O(∆y), O(∆t) for the truncation error of the

fractional derivatives is proven in [9]. It should be proven that the additional

perturbation error of (2.7) has the truncation error O(∆x) + O(∆y), it was

proven in [10] that (Lβ,xLγ,y)u
n+1
i,j converges to the mixed fractional derivative

of order O(∆x) +O(∆y).

Therefore, the implicit difference-ADI method has truncation error of the form

O(∆x) +O(∆y) +O(∆t). □

We define the following notations:

Dn+1
i,j =

dn+1
i,j (∆t)α

(∆x)β
,

En+1
i,j =

en+1
i,j (∆t)α

(∆x)γ
.

In the following, two theorems are proven to show the stability of the im-

plicit difference-ADI method. One of them shows the stability of each one-

dimensional system defined by equations (2.8) and (2.9). The proof of the first

theorem is similar to theorem 3.2 in [10].

Theorem 3.2. Let 0 < α < 1, 1 < β < 2, 1 < γ < 2, then each one-

dimensional implicit system that presented in the equations (2.8) and (2.9) is

unconditionally stable.

Proof. At each gridpoint yk, for k = 1, . . . , Ny−1, the linear system of equations

can be written as follows:

AkU
∗
k = −ωα,1IU

n
k − ωα,2IU

n−1
k − · · · − ωα,n+1IU

0
k + (∆t)αQn+1

k , (3.1)

where results from Eq.(2.8) and we have

U∗
k = [u∗

1,k, u
∗
2,k, . . . , u

∗
Nx−1,k]

T ,

U∗
k = [un

1,k, u
n
2,k, . . . , u

n
Nx−1,k]

T ,

and according to the boundary conditions from Eq.(2.10) we get

Qn+1
k = [qn+1

1,k , qn+1
k,2 , . . . , qn+1

Nx−1,k +Dn+1
Nx−1,kωα,0(1− (∆t)αLγ,y)B

n+1
Nx,k

]T ,

and Ak = [Ai,j ] is the (Nx − 1) × (Nx − 1) matrix of coefficients resulting

from Eq.(3.1) where the matrix entries are resulting from ith row defined by

Eq.(2.8). For example, for i = 1 we have

−Dn+1
1,k ωβ,2u

∗
0,k + (1−Dn+1

1,k ωβ,1)u
∗
1,k −Dn+1

1,k ωβ,0u
∗
2,k =

−
n+1∑
s=1

ωα,su
n+1−s
1,k + qn+1

1,k (∆t)α,
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also, for i = Nx − 1 the equation is as follows:

−Dn+1
Nx−1,kωβ,Nxu

∗
0,k −Dn+1

Nx−1,kωβ,Nx−1u
∗
1,k − . . .+ (1−Dn+1

Nx−1,kωβ,1)u
∗
Nx−1,k

−Dn+1
Nx−1,kωβ,0u

∗
Nx,k = −

n+1∑
s=1

ωα,su
n+1−s
Nx−1,k + qn+1

Nx−1,k(∆t)α.

Then, the entries Ai,j , for i = 1, . . . , Nx − 1, j = 1, . . . , Nx − 1 are defined by

Ai,j =


−Dn+1

i,k ωβ,i−j+1, j ≤ i− 1,

1−Dn+1
i,k ωβ,1, j = i,

−Dn+1
i,k ωβ,0, j = i+ 1,

0, j > i+ 1.

To prove the stability, it will be shown that the spectral radius of each matrix

A−1
k is less than one. We will show that every eigenvalue of the matrix Ak has

a magnitude larger than 1, using the Gershgorin theorem.

It is easy to see that −ωβ,1 >
∑N

l=0,l ̸=1 ωβ,k, because ωβ,1 = −β, and for

1 < β < 2 and j ̸= 1 we have ωβ,j > 0. Substituting z = −1 into (1 + z)β =∑∞
l=0

(
β
l

)
zl yields

∑∞
l=0 ωβ,l = 0, and therefore −ωβ,1 >

∑N
k=0,k ̸=1 ωβ,k. Using

Gershgorin theorem, the eigenvalues of the matrix Ak are in the disks centered

at Ai,i = 1−Dn+1
i,k ωβ,1 = 1 +Dn+1

i,k β, with radius

ri =

Nx−1∑
l=1,l ̸=i

|Ai,l| ≤
i+1∑

l=1,l ̸=i

Dn+1
i,k ωβ,i−l+1 < Dn+1

i,k β.

So every eigenvalue λ of the matrix Ak has a real part larger than 1, and hence

a magnitude larger than 1. Therefore, the spectral radius of each matrix A−1
k

is less than one.

The stability proof of the second step is also similar to theorem 3.2 in [10], but

we need the coefficient matrix to prove the next theorem. When we change

the direction of sweeping to obtain un+1 from u∗, we should solve the linear

system of equations defined by CkU
n+1
k = U∗

k that result from Eq.(2.9) at the

fixed grid point xk, where

U∗
k = [u∗

k,1, u
∗
k,2, . . . , u

∗
k,Ny−1]

T ,

Un+1
k = [un+1

k,1 , un+1
k,2 , . . . , un+1

k,Ny−1]
T ,

and Ck = [Ci,j ] is the coefficient matrix at the grid point xk for k = 1, . . . , Nx−
1. The entries of the matrix Ck are defined from (2.9), for i = 1, . . . , Ny − 1,

j = 1, . . . , Ny − 1 as follows:

Ci,j =


−En+1

k,i ωγ,i−j+1, j ≤ i− 1,

1− En+1
k,i ωγ,1, j = i,

−En+1
k,i ωγ,0, j = i+ 1,

0, j > i+ 1.

Similar argument results that Ck has spectral radius less than one. □
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Eq.(2.6) can be written in the matrix form

MNUn+1 = −ωα,1IU
n − ωα,2IU

n−1 − · · · − ωα,n+1IU
0 +Rn+1, (3.2)

where the matricesM , N represent the operators (1−(∆t)αLβ,x), (1−(∆t)αLγ,y),

and

Un = [un
1,1, . . . , u

n
Nx−1,1, u

n
1,2, . . . , u

n
Nx−1,2, . . . , u

n
1,Ny−1, . . . , u

n
Nx−1,Ny−1]

T ,

and the vector Rn+1 contains the forcing term and the boundary conditions.

The matrix M is a block diagonal matrix, with (Ny−1)× (Ny−1) blocks. The

non-zero blocks are (Nx − 1)× (Nx − 1) super-triangular Ak matrices resulting

from Eq.(2.8). Then, the matrix M can be written as

M = diag(A1, A2, . . . , ANy−1).

The matrix N is a block super-triangular matrix with (Ny − 1) × (Ny − 1)

blocks in which the non-zero blocks are (Nx−1)×(Nx−1) diagonal matrices Ck

resulting from Eq.(2.9). If N = [Ni,j ], where each Ni,j is an (Nx−1)×(Nx−1)

matrix, we can write Ni,j as follows:

Ni,j =

{
0, j > i+ 1,

diag((C1)i,j , (C2)i,j , . . . , (CNx−1)i,j), j ≤ i+ 1,

where (Ck)i,j is (i, j)th entry of matrix Ck.

We need the matrices M and N to commute in order to show unconditional

stability. The commutativity assumption refers to commutativity assumption

for the operators (1 − (∆t)αLβ,x) , (1 − (∆t)αLβ,x). The requirement for

the commutativity of these two operators is also a common assumption in

establishing stability and convergence of the ADI methods in the classical (i.e.

α = 1 , β = γ = 2) two-dimensional equation (see [4, 10]).

We will present the following lemma to prove the stability theorem.

Lemma 3.3. Let 0 < α < 1, then it can be shown that

(1) −1 < ωα,j < 0, for j = 1, 2, . . .,

(2) ∀N ≥ 1,

0 < −
N∑
j=1

ωα,j < 1.

Theorem 3.4. Let 0 < α < 1, 1 < β < 2, 1 < γ < 2. Assuming that the

matrices M , N commute then the implicit difference-ADI method, presented in

(2.6), is unconditionally stable.

Proof. It was shown that M = diag(A1, A2, . . . , ANy−1), according to Ger-

shgorin theorem, the eigenvalues of the matrix M are in the union of the

Gershgorin disks for the matrices Ak. According to the proof of theorem 3.2,

every eigenvalue of the matrix M has a real-part, and a magnitude larger than

1. Hence the magnitude of every eigenvalue of the inverse matrix M−1 is less
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than 1, and so the spectral radius of matrix M−1 is less than 1. We had similar

argument about matrix Ck in theorem 3.2. Similarly, the eigenvalues of the

matrix N are in the union of the Gershgorin disks for the matrices Ck, therefore

the spectral radius of the matrix N−1 is also less than 1.

Let us assume an error ε0 in U0 then according to Eq.(3.2) an error εn+1 in

Un+1 follows as

εn+1 = −ωα,1(MN)−1εn − ωα,2(MN)−1εn−1 − · · · − ωα,n+1(MN)−1ε0.

Since the matrices M , N commute, we have

∥εn+1∥∞ ≤ |ωα,1|∥M−1∥∥N−1∥∥εn∥+ |ωα,2|∥M−1∥∥N−1∥∥εn−1∥
+ · · ·+ |ωα,n+1|∥M−1∥∥N−1∥∥ε0∥, (3.3)

where ∥.∥ is infinity norm. Since spectral radius of the inverse matrices M−1,

N−1 are less than 1, according to the second Gershgorin theorem [20], ∥M−1∥ ≤
1, ∥N−1∥ ≤ 1. We use mathematical induction to prove ∥εn∥ ≤ ∥ε0∥. Subsitute
n = 0 in Eq.(3.3)

∥ε1∥ ≤ |ωα,1|∥M−1∥∥N−1∥∥ε0∥ ≤ ∥ε0∥.

Let ∥εk∥ ≤ ∥ε0∥, for k = 1, . . . , n, then Eq. (3.3) can be written as follows

∥εn+1∥ ≤ |ωα,1|∥εn∥+ |ωα,2|∥εn−1∥+ · · ·+ |ωα,n+1|∥ε0∥
≤ |ωα,1|∥ε0∥+ |ωα,2|∥ε0∥+ · · ·+ |ωα,n+1|∥ε0∥

=
n+1∑
l=1

ωα,l∥ε0∥

Now we have ∥εn+1∥ ≤ ∥ε0∥ by using lemma 3.3. This proves stability of

implicit difference-ADI method. □

We note that zero boundary conditions on the left and the bottom of the

rectangular domain are necessary and we extend this zero condition, because

in this case the Riemman-Liouville and the Liouville definition coincide and

all the results about consistency and the order of Grünwald formula already

proven for Liouville case [9, 10, 22] are applicable. It is interesting to solve this

problem without non-zero boundary condition [21].

4. Numerical Results

We solve two fractional differential equations, see [26], and compare the

numerical results, and also solve another example to show convergence of the

presented method.
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4.1. Example 1. Consider the fractional diffusion equation

∂0.5u(x, y, t)

∂t0.5
= d(x, y, t)

∂1.2u(x, y, t)

∂x1.2
+e(x, y, t)

∂1.8u(x, y, t)

∂y1.8
+q(x, y, t), (4.1)

on finite domain 0 < x < 1, 0 < y < 1, for 0 ≤ t ≤ 1. The diffusion coefficients

and the forcing function are as follows

d(x, y, t) =
Γ(2.8)

Γ(4)
x1.2,

e(x, y, t) =
Γ(2.2)

Γ(4)
y1.8,

q(x, y, t) = x3y3
(

8

3Γ(0.5)
t1.5 − 2t2 − 2

)
,

with initial conditions u(x, y, 0) = x3y3, and the boundary conditions

u(0, y, t) = u(x, 0, t) = 0,

u(1, y, t) = (t2 + 1)y3,

u(x, 1, t) = (t2 + 1)x3.

The exact solution is u(x, y, t) = (t2 + 1)x3y3.

Since the implicit difference-ADI method needs zero initial conditions, we as-

sume that

v(x, y, t) = u(x, y, t)− u(x, y, 0) = u(x, y, t)− x3y3, (4.2)

and by using the Riemman-Liouville derivative formula [14]

0D
α
xx

ν =
Γ(1 + ν)

Γ(1 + ν − α)
xν−α,

we have

∂0.5v(x, y, t)

∂t0.5
=

∂0.5u(x, y, t)

∂t0.5
,

∂1.2v(x, y, t)

∂x1.2
=

∂1.2u(x, y, t)

∂x1.2
− Γ(4)

Γ(2.8)
x1.8y3,

∂1.8v(x, y, t)

∂y1.8
=

∂1.8u(x, y, t)

∂y1.8
− Γ(4)

Γ(2.2)
x3y1.2.

Substituting v(x, y, t) for u(x, y, t) results in the following differential equation

with zero initial conditions

∂0.5v(x, y, t)

∂t0.5
= d(x, y, t)

∂1.2v(x, y, t)

∂x1.2
+e(x, y, t)

∂1.8v(x, y, t)

∂y1.8
+q(x, y, t), (4.3)
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with the new diffusion coefficients and the new forcing function

d(x, y, t) =
Γ(2.8)

Γ(4)
x1.2,

e(x, y, t) =
Γ(2.2)

Γ(4)
y1.8,

q(x, y, t) = x3y3
(

8

3Γ(0.5)
t1.5 − 2t2

)
,

with the boundary conditions

v(0, y, t) = v(x, 0, t) = 0,

v(1, y, t) = t2y3,

v(x, 1, t) = t2x3.

Table 1 shows the maximum absolute numerical error, at time t=1.

Table 1. Maximum absolute numerical error by using the

implicit difference-ADI method for Example 1 at time t=1

∆t ∆x = ∆y Maximum error

1
10

1
10 8.43962× 10−3

1
20

1
20 8.34223× 10−3

1
40

1
40 7.23612× 10−3

1
100

1
100 5.40802× 10z−3

Table 2. Maximum absolute numerical error by using the

implicit difference approximation [26] for Example 1 at time

t=1

∆t ∆x = ∆y Maximum error

1
10

1
10 9.93756× 10−2

1
20

1
20 7.14376× 10−2

1
40

1
40 4.23914× 10−2

1
100

1
100 1.87382× 10−2

Example 1 was solved in [26] by applying the implicit difference approximation.

The numerical result in table 1 can be compared with table 2. Accuracy of

results obtained by the method of this paper is better than those reported in

[26].

4.2. Example 2. Consider the fractional diffusion equation

∂0.4u(x, y, t)

∂t0.4
= d(x, y, t)

∂2u(x, y, t)

∂x2
+ e(x, y, t),

∂2u(x, y, t)

∂y2
+ q(x, y, t), (4.4)
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on finite domain 0 < x < 1, 0 < y < 1, for 0 ≤ t ≤ 1. The diffusion coefficients

and the forcing function are as follows

d(x, y, t) =
2t1.6

π2
Γ(0.6),

e(x, y, t) =
t1.6

12π2Γ(0.6)

q(x, y, t) =
25t1.6

12Γ(0.6)
(t2 + 2) sinπx cosπy,

with initial conditions u(x, y, 0) = sinπx cosπy, and the boundary conditions

u(0, y, t) = u(x, 0, t) = 0,

u(1, y, t) = u(x, 1, t) = 0.

The exact solution for this fractional diffusion equation is u(x, y, t) = (t2 +

2) sinπx cosπy.

Table 3. Maximum absolute numerical error by using the

implicit difference-ADI for Example 2 at time t=1

∆t ∆x = ∆y Maximum error

1
16

1
4 2.96627× 10−2

1
64

1
8 4.85530× 10−3

1
100

1
10 2.25561× 10−3

1
400

1
10 2.47028× 10−4

Table 3 shows that accuracy of this method is better than [26], table 4. The

order of spatial derivatives are 2 in this example, so the shifted Grünwald

formula changes to central difference formula and the numerical results show

this.

Table 4. Maximum absolute numerical error by using the

implicit difference approximation [26] for Example 2 at time

t=1

∆t ∆x = ∆y Maximum error
1
16

1
4 5.39188× 10−2

1
64

1
8 1.30699× 10−2

1
100

1
10 8.26645× 10−3

1
400

1
20 1.67537× 10−3
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4.3. Example 3. Consider the fractional diffusion equation

∂0.5u(x, y, t)

∂t0.5
= d(x, y, t)

∂1.8u(x, y, t)

∂x1.8
+e(x, y, t)

∂1.6u(x, y, t)

∂y1.6
+q(x, y, t), (4.5)

on finite domain 0 < x < 1, 0 < y < 1, for 0 ≤ t ≤ 1. The diffusion coefficients

and the forcing function are as follows

d(x, y, t) =
Γ(2.2)

6
x2.8y,

e(x, y, t) =
2

Γ(4.6)
y2.6x,

q(x, y, t) = t0.5x3y3.6E1,1.5(t)− 2(et − 1)x4y4.6,

with initial conditions u(x, y, 0) = 0, and the boundary conditions

u(0, y, t) = u(x, 0, t) = 0,

u(1, y, t) = (et − 1)y3.6,

u(x, 1, t) = (et − 1)x3.

The exact solution for this fractional diffusion equation is u(x, y, t) = (et −
1)x3y3.6.

Table 5. Maximum absolute numerical error by using the

implicit difference-ADI for Example 3 at time t=1

∆t ∆x = ∆y Maximum error

1
10

1
10 1.54478× 10−2

1
20

1
20 1.46362× 10−2

1
40

1
40 1.20455× 10−2

1
80

1
80 9.43800× 10−3

1
100

1
100 8.66339× 10−3

These numerical examples show convergence of the implicit difference-ADI

method as was proven.

5. Conclusions

In this paper, the implicit difference method for the two-dimensional space-

time fractional diffusion equation has been presented, and the alternating di-

rection implicit approach was used to decrease computational cost. We proved

that our method is consistent and unconditionally stable, and so convergent.

This method can be used to solve time fractional, or space fractional, and space-

time fractional differential equations with appropriate computational cost. Ad-

ditionally we need zero initial conditions to use Grünwald formula, and also zero

boundary conditions on the left and the bottom of the rectangular domain.
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